MRI vs. CT in Diagnosing Acute Appendicitis in Children

Systematic review of the accuracy of magnetic resonance imaging in the diagnosis of acute appendicitis in children: comparison with computed tomography

Author: Benjamin Whitt

Author Affiliations: Saba University School of Medicine, MA, USA

[button link=”” type=”big” color=”green” newwindow=”yes”] Full Text Article PDF[/button]

Corresponding Author: Benjamin Whitt,

Key Words: Appendicitis; Diagnostic Imaging; Sensitivity; Specificity; Children



Computed tomography (CT) has emerged as the gold standard test for the evaluation of suspected appendicitis in pediatric patients. It has been shown to have excellent accuracy and to decrease negative appendectomy rates. However, CT scans expose patients to ionizing radiation, which is of especially high concern in children. Magnetic resonance imaging (MRI) is a potential alternative that could be used to evaluate children while eliminating exposure to radiation. This systematic review tests the hypothesis that the sensitivity and specificity of MRI are not inferior to that of CT in the evaluation of suspected appendicitis in children.


A search of the Medline database was conducted to identify articles that used MRI to evaluate children with suspected appendicitis. Articles that focused on pediatric subjects and reported sensitivity and specificity of MRI in these subjects were included. Data for the calculation of sensitivity, specificity, and 95% confidence intervals for each were extracted from each study included. Pooled data for sensitivity and specificity of MRI were calculated and tested for significance compared to sensitivity and specificity of CT using Fisher’s exact test.


Nine studies were found to be relevant to the question posed by this systematic review and met the inclusion criteria. The pooled sensitivity and specificity of MRI for the diagnosis of appendicitis were 0.96 (95% CI: 0.94-0.98) and 0.97 (95% CI: 0.96-0.98) as opposed to values of 0.94 (95% CI: 0.92-0.97) and 0.95 (95% CI: 0.94-0.97) for CT. The difference between MRI and CT was not statistically significant for sensitivity (p=0.11) or specificity (p=0.06) in the evaluation of suspected appendicitis in children.


In children with suspected appendicitis, the sensitivity and specificity of MRI are comparable to those of CT in terms of sensitivity and specificity. MRI is a viable choice for imaging in these patients and limits exposure to radiation.


Published on date: September, 2017

DOI: 10.15404/msrj/07.2017.0001

Citation: Whitt, Benjamin. Systematic review of the accuracy of magnetic resonance imaging in the diagnosis of acute appendicitis in children: comparison with computed tomography, Medical Student Research Journal (2015), 4(3), 54-58. doi:10.15404/msrj/07.2017.0001


  1. Guthery, S.L., Hutchings, C., Dean, J.M., & Hoff, C. (2004). National estimates of hospital utilization by children with gastrointestinal disorders: analysis of the 1997 kids’ inpatient database. The Journal of Pediatrics, 144(5), 589-94.
  2. Addiss, D.G., Shaffer, N., Fowler, B.S., & Tauxe, R.V. (1990). The epidemiology of appendicitis and appendectomy in the United States. American Journal of  Epidemiology, 132 (5), 910-25.
  3. Seetahal, S.A., Bolorunduro, O.B., & Sookdeo, T.C. et al. (2011). Negative appendectomy: a 10-year review of a nationally representative sample. American Journal of Surgery, 201(4), 433-7.
  4. Saito, J.M., Yan, Y., Evashwick, T.W., Warner, B.W., & Tarr, P.I. (2013). Use and accuracy of diagnostic imaging by hospital type in pediatric appendicitis. Pediatrics, 131(1), 37-44.
  5. Fahimi, J., Herring, A., Harries, A., Gonzales, R., & Alter, H. (2012). Computed tomography use among children presenting to emergency departments with abdominal pain. Pediatrics, 130(5), 1069-75.
  6. Hernanz-Schulman, M. (2010). CT and US in the diagnosis of appendicitis: an argument for CT. Radiology, 255(1), 3-7.
  7. Raja, A.S., Wright, C., & Sodickson, A.D. et al. (2010). Negative appendectomy rates in the era of CT: an 18-year perspective. Radiology, 256(2), 460-65.
  8. Charfi, S., Sellami, A., Affes, A., Yaich, K., Mzali, R., & Boudawara, T.S. (2014) Histopathological findings in appendectomy specimens: a study of 24,697 cases. International Journal of Colorectal Disease, 29(8), 1009-12.
  9. Doria, A.S., Moineddin, R., & Kellenberger, C.J. et al. (2006). US or CT for Diagnosis of Appendicitis in Children and Adults? A Meta-Analysis. Radiology, 241(1), 83-94.
  10. Brenner, D.J. & Hall, E.J. (2007). Computed tomography—an increasing source of radiation exposure. New England Journal of Medicine, 357(22), 2277-84.
  11. Mathews, J.D., Forsythe, A.V., & Brady, Z. et al. (2013). Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 346.
  12. Pearce, M.S., Salotti, J.A., & Little, M.P. et al. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 380(9840), 499-505.
  13. Nash, K., Hafeez, A., & Hou, S. (2002). Hospital-acquired renal insufficiency. American Journal of Kidney Diseases, 39(5), 930-36.
  14. Laroche, D., Aimone-Gastin, I., & Dubois, F. et al. (1998). Mechanisms of severe, immediate reactions to iodinated contrast material. Radiology, 209(1), 183-90.
  15. Cogley, J.R., O’Connor, S.C., Houshyar, R., & Al Dulaimy, K. (2012). Emergent pediatric US: what every radiologist should know. Radiographics, 32(3), 651-65.
  16. van Randen, A., Bipat, S., Zwinderman, A.H., Ubbink, D.T., Stoker, J., & Boermeester, M.A. (2008). Acute appendicitis: meta-analysis of diagnostic performance of CT and graded compression US related to prevalence of disease. Radiology, 249(1), 97-106.
  17. Lowe, L.H., Penney, M.W., & Stein, S.M. et al. (2001). Unenhanced limited CT of the abdomen in the diagnosis of appendicitis in children: comparison with sonography. American Journal of Roentgenology, 176(1), 31-35.
  18. Krishnamoorthi, R., Ramarajan, N., & Wang, N.E. et al. (2011). Effectiveness of a staged US and CT protocol for the diagnosis of pediatric appendicitis: reducing radiation exposure in the age of ALARA. Radiology, 259(1), 231-39.
  19. Poletti, P.A., Platon, A., & De Perrot, T. et al. (2011). Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT. European Radiology, 21(12), 2558-66.
  20. Rosen, M.P., Ding, A., & Blake, M.A. et al. (2011). ACR Appropriateness Criteria® right lower quadrant pain—suspected appendicitis. Journal of the American College of Radiology, 8(11), 749-55.
  21. Pedrosa, I. & Rofsky, N.M. (2003). MR imaging in abdominal emergencies. Radiologic Clinics of North America, 41(6), 1243-73.
  22. Barger Jr, R.L. & Nandalur, K.R. (2010). Diagnostic performance of magnetic resonance imaging in the detection of appendicitis in adults: a meta-analysis. Academic Radiology, 17(10), 1211-16.
  23. Dillman, J.R., Gadepalli, S., & Sroufe, N.S. et al. (2016). Equivocal Pediatric Appendicitis: Unenhanced MR Imaging Protocol for Nonsedated Children-A Clinical Effectiveness Study. Radiology, 279(1), 216-25.
  24. Thieme, M.E., Leeuwenburgh, M.M., & Valdehueza, Z.D. et al. (2014). Diagnostic accuracy and patient acceptance of MRI in children with suspected appendicitis. European Radiology, 24(3), 630-37.
  25. Herliczek, T.W., Swenson, D.W., & Mayo-Smith, W.W. (2013). Utility of MRI after inconclusive ultrasound in pediatric patients with suspected appendicitis: retrospective review of 60 consecutive patients. American Journal of Roentgenology, 200(5), 969-73.
  26. Rosines, L.A., Chow, D.S., & Lampl, B.S. et al. (2014) Value of gadolinium-enhanced MRI in detection of acute appendicitis in children and adolescents. American Journal of Roentgenology, 203(5), 543-48.
  27. Kulaylat, A.N., Moore, M.M., & Engbrecht, B.W. et al. (2015). An implemented MRI program to eliminate radiation from the evaluation of pediatric appendicitis. Journal of Pediatric Surgery, 50(8), 1359-63.
  28. Moore, M.M., Gustas, C.N., & Choudhary, A.K. et al. (2012). MRI for clinically suspected pediatric appendicitis: an implemented program. Pediatric Radiology, 42(9), 1056-63.
  29. Orth, R.C., Guillerman, R.P., Zhang, W., Masand, P., & Bisset III, G.S. (2014). Prospective comparison of MR imaging and US for the diagnosis of pediatric appendicitis. Radiology, 272(1), 233-40.
  30. Bayraktutan, U., Oral, A., & Kantarci, M. et al. (2014). Diagnostic performance of diffusion-weighted MR imaging in detecting acute appendicitis in children: comparison with conventional MRI and surgical findings. Journal of Magnetic Resonance Imaging, 39(6), 1518-24.
  31. Koning, J.L., Naheedy, J.H., & Kruk, P.G. (2014). Diagnostic performance of contrast enhanced MR for acute appendicitis and alternative causes of abdominal pain in Pediatric Radiology, 44(8), 948-55.
  32. Cobben, L., Groot, I., Kingma, L., Coerkamp, E., Puylaert, J., & Blickman, J. (2009). A simple MRI protocol in patients with clinically suspected appendicitis: results in 138 patients and effect on outcome of appendectomy. European Radiology, 19(5), 1175-83.
  33. Heverhagen, J.T., Pfestroff, K., Heverhagen A.E., Klose, K.J., Kessler, K., & Sitter, H. (2012). Diagnostic accuracy of magnetic resonance imaging: a prospective evaluation of patients with suspected appendicitis (diamond). Journal of Magnetic Resonance Imaging, 35(3), 617-23.
  34. Leeuwenburgh, M.M., Wiarda, B.M., & Jensch, S. et al. (2014). Accuracy and interobserver agreement between MR-non-expert radiologists and MR-experts in reading MRI for suspected appendicitis. European Journal of Radiology, 83(1), 103-10.